
govcookiecutter: A template for
data science projects
Eric Young - Data Scientist, GDS, 20 July 2021 - agile, Data science

Agile data science is hard. Data exploration and cleaning, researching techniques,
and generally “doing data science” takes time — think months rather than weeks.

In the Civil Service, we must also ensure our analyses are fit-for-purpose. By
analysis we mean anything with an input, some processing and an output, like a
machine learning pipeline, a dashboard, or even a spreadsheet.

Assured and robust analysis is important to avoid unintended consequences,
which could impact individuals and their livelihoods. The Aqua book provides high-
level guidance around producing quality analysis in government, and these
analytical quality assurance (AQA) principles must be followed in our work.

Iterative, incremental, and evolutionary delivery is a key part of Agile. How can we
balance this with the need for robust AQA, without grinding delivery to a halt? And,
equally importantly, how do we make sure AQA is done?

Baking with govcookiecutter

https://dataingovernment.blog.gov.uk/author/eric-young-data-scientist-gds/
https://dataingovernment.blog.gov.uk/category/agile/
https://dataingovernment.blog.gov.uk/category/data-science/
https://www.gov.uk/service-manual/agile-delivery
https://www.gov.uk/government/publications/the-aqua-book-guidance-on-producing-quality-analysis-for-government

To try and address these needs, the GDS data science team created
govcookiecutter. By answering a few prompts, this generates (bakes) a project
structure with a range of AQA features. We can’t tell you what checks to do — that
varies between projects — but we can make it easier for you to do them.

Some assumptions to start though:

1. You’re using Git for version control with either GitHub or GitLab
2. You have access to Python or both Python and R
3. Ideally, you have a Unix-based machine, although most features will work on

Windows!

Most of the features use Git hooks based on the pre-commit framework; these
hooks run checks before you even write a message for your commit! If any fail,
then you won’t be able to commit code until the failing checks are resolved. For R
users, we have also implemented most of these hooks.

Want to see a live demo with more details about govcookiecutter? Check out this
live recording from earlier this year!

Keeping data and secrets safe
On the most basic level, govcookiecutter-based projects don’t track any files inside
the data folder. But there is a hook to check if you are trying to commit files larger
than 5MB as well, just in case there are any stragglers.

https://github.com/ukgovdatascience
https://github.com/ukgovdatascience/govcookiecutter
https://github.com/
https://www.gitlab.com/
https://github.com/ukgovdatascience/govcookiecutter/issues/20
https://pre-commit.com/
https://lorenzwalthert.github.io/precommit/articles/available-hooks.html
https://www.youtube.com/watch?v=N7_d3k3uQ_M

Another risky area for data leakage is in Jupyter notebooks, a popular tool for data
scientists. Executing notebooks leaves outputs on display, which can end up in
version control. In addition to making tracked changes difficult, some of your
sensitive data could also be exposed in these outputs. To prevent leaking data, the
nbstripout hook cleans up all your Jupyter notebook outputs, except for explicitly-
tagged cells.

The detect-secrets hook tries to identify secrets (for example, credentials, API
tokens) and prevent them being version-controlled. It uses regular expressions,
entropy detection (heuristic approaches to find ‘secret-like’ entries) and keyword
detection in its searches, but it’s not foolproof, so should only complement, not
replace, your organisation’s best practice.

But you will still need to use your secrets locally. To do this, you can use the
untracked .secrets file to store all your secrets as environment variables. You can
then load these environment variables in your scripts, safe in the knowledge that
your secrets will stay local.

Documentation
Keeping documentation up-to-date is tricky, especially if it’s stored far away from
your code. With the docs folder, govcookiecutter-based projects keep
documentation in one place that’s easily accessible for anyone with access to your
repository. It also means reviewers can check that documentation has been
updated via the commits.

The docs folder also stores all the AQA documentation, including departmental
frameworks, AQA plans, and assumption logs, so everyone can clearly see and
access them.

We’ve documented all the features discussed in this post so you don’t have to, and
we’ve also set up Sphinx, a Python documentation generator used by many major
packages, so you can (optionally) build a searchable website of all your
documentation quickly and easily.

Testing and structure
Verifying your work is a key pillar of AQA, and one way to do this is to write tests
for your code. Instead of spending time configuring your test suite, we have set up
the pytest framework for you, as well as coverage.py for code coverage, so you
can get on with writing tests, not configs.

A consistent project structure also means it’s much quicker to bring colleagues into
your project with everyone having an agreed understanding of which files go
where.

Bringing it all together for Agile

https://jupyter.org/
https://github.com/kynan/nbstripout
https://github.com/Yelp/detect-secrets
https://www.sphinx-doc.org/en/master/index.html
https://docs.pytest.org/
https://github.com/nedbat/coveragepy

And how do we make sure you and your contributors do these checks? Whenever
a pull or merge request is raised, govcookiecutter-based projects use a request
template that has a checklist for contributors to tick off.

This reduces the burden of filling out lots of documentation, when all the details
should already be in commits, their messages, or in pull/merge requests
comments. And it provides a lightweight, but auditable way to quickly ensure
appropriate AQA has been completed for this branch of code.

The future of govcookiecutter
Going forward, there are a few more things we would like to add, but we would also
love contributions to the project. It’s open source, and freely accessible to many
public sector data scientists, so would be a good opportunity to showcase your
skills. Feel free to fork the repository and add your contributions!

We would also love to incorporate AQA frameworks from other government
departments, and public sector organisations into govcookiecutter, so that others
can see and improve on best practice; contribute directly on the GitHub repository,
or drop us an email.

For standalone R users, we ran a poll earlier this year where 82% of respondents
(32 out of 39) wanted a pure R version. If you’re interested in this, get in touch, and
have a look at this issue.

We’re hiring data specialists on GOV.UK! Find out what roles are open on
GDS’s career page.

All GOV.UK blogs All GOV.UK blog posts GOV.UK
All departments Accessibility statement Cookies

All content is available under the Open Government Licence
v3.0, except where otherwise stated © Crown copyright

https://github.com/ukgovdatascience/govcookiecutter
https://dataingovernment.blog.gov.uk/2021/07/20/govcookiecutter-a-template-for-data-science-projects/gds-data-science@digital.cabinet-office.gov.uk
https://youtu.be/N7_d3k3uQ_M?t=2665
https://github.com/ukgovdatascience/govcookiecutter/issues/17
https://insidegovuk.blog.gov.uk/2021/05/28/working-in-data-insight-and-user-research-roles-at-gov-uk/
https://gdscareers.gov.uk/
https://www.blog.gov.uk/
https://www.blog.gov.uk/all-posts/
https://www.gov.uk/
https://www.gov.uk/government/organisations
https://www.blog.gov.uk/accessibility-statement/
https://www.blog.gov.uk/cookies
https://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
https://www.nationalarchives.gov.uk/information-management/re-using-public-sector-information/uk-government-licensing-framework/crown-copyright/

